Model Theory of Measure Spaces and Probability Logic

نویسندگان

  • Rutger Kuyper
  • Sebastiaan Terwijn
چکیده

We study the model-theoretic aspects of a probability logic suited for talking about measure spaces. This nonclassical logic has a model theory rather different from that of classical predicate logic. In general, not every satisfiable set of sentences has a countable model, but we show that one can always build a model on the unit interval. Also, the probability logic under consideration is not compact. However, using ultraproducts we can prove a compactness theorem for a certain class of weak models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction and stochastic applications of measure spaces in higher-order logic

A rich formalization of measure and probability theory is a prerequisite to analyzing probabilistic program behaviour in interactive theorem provers. When using probability theory it is important to have the necessary tools (definitions and theorems) to construct measure spaces with the desired properties. This thesis presents the formalization of a rich set of constructions. We start with disc...

متن کامل

Fractional Probability Measure and Its Properties

Based on recent studies by Guy Jumarie [1] which defines probability density of fractional order and fractional moments by using fractional calculus (fractional derivatives and fractional integration), this study expands the concept of probability density of fractional order by defining the fractional probability measure, which leads to a fractional probability theory parallel to the classical ...

متن کامل

Acceptable random variables in non-commutative probability spaces

Acceptable random variables are defined in noncommutative (quantum) probability spaces and some of probability inequalities for these classes  are obtained. These results are a generalization of negatively orthant dependent random variables in probability theory. Furthermore, the obtained results can be used for random matrices.

متن کامل

The Modal Logic of Probability Extended Abstract

The present paper offers a novel axiomatizat ion of the probabili ty concept in terms of modal logic. The structures we axiomatize consist of a measurable space of possible worlds, and for each possible world, a probability measure on the space and a valuation function. Roughly speaking, these s tructures can be seen as probabilistic refinements of the familiar Kripke structures of. modal logic...

متن کامل

Some Observations on Dirac Measure-Preserving Transformations and their Results

Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Rew. Symb. Logic

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013